ON AN ELLIPTIC SYSTEM OF P(X)-KIRCHHOFF-TYPE UNDER NEUMANN BOUNDARY CONDITION

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a nonlocal elliptic system of p-Kirchhoff-type under Neumann boundary condition

Ω |∇u| )]p−1 ∆pu = f (u, v)+ ρ1(x) in Ω, − [ M2 (∫ Ω |∇v| )]p−1 ∆pv = g(u, v)+ ρ2(x) in Ω, ∂u ∂η = ∂v ∂η = 0 on ∂Ω, (1.1) where Ω ⊂ R,N ≥ 1, is a bounded smooth domain, 1 < p < N, η is the unit exterior vector on ∂Ω , ∆p is the p-Laplacian operator ∆pu = div(|∇u|p−2∇u) ∗ Corresponding author. E-mail addresses: [email protected], [email protected] (F.J.S.A. Corrêa), [email protected] (R.G. Na...

متن کامل

On nonlocal elliptic system of $p$-Kirchhoff-type in $mathbb{R}^N$

‎Using Nehari manifold methods and Mountain pass theorem‎, ‎the existence of nontrivial and radially symmetric solutions for a class of $p$-Kirchhoff-type system are established.

متن کامل

On a class of Kirchhoff type systems with nonlinear boundary condition

A class of Kirchhoff type systems with nonlinear boundary conditions considered in this paper. By using the method of Nehari manifold, it is proved that the system possesses two nontrivial nonnegative solutions if the parameters are small enough.

متن کامل

On an elliptic Kirchhoff-type problem depending on two parameters

Let Ω ⊂ R be a bounded domain with smooth boundary, and let K : [0,+∞[→ R be a given continuous function. If n ≥ 2, we denote by A the class of all Carathéodory functions φ : Ω×R → R such that sup (x,t)∈Ω×R |φ(x, t)| 1 + |t|q < +∞ , where 0 < q < n+2 n−2 if n > 2 and 0 < q < +∞ if n = 2. While, when n = 1, we denote by A the class of all Carathéodory functions φ : Ω ×R → R such that, for each r...

متن کامل

Roughness effect on the Neumann boundary condition

We study the effect of a periodic roughness on a Neumann boundary condition. We show that, as in the case of a Dirichlet boundary condition, it is possible to approach this condition by a more complex law on a domain without rugosity, called wall law. This approach is however different from that usually used in Dirichlet case. In particular, we show that this wall law can be explicitly written ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Modelling and Analysis

سال: 2012

ISSN: 1392-6292,1648-3510

DOI: 10.3846/13926292.2012.655788